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“Divide et Impera” - Julius Caesar

INTRODUCTION



Concept

● Deviating

● Continue

● Avoid conflicts



Git, is not just a name

● Efficiency

● Snapshot system

● “Killer feature”

Git’s logo



WHY ?

2



● “The Master branch is already 
good”

● When you get in a bigger project 
this won’t work

WHY ? - Do we need branches ?



● Powerful tool you need to learn

● The sooner the better

WHY ? - Personal Benefits



● Isolate the work from the main branch

● Limits who can contribute to each branch

● Simplifies the QA and bug fix process

● Ensures that a change to a branch must be reviewed

● Branches are cheap

● Agile Workflow

WHY ? - Pros



● For very small projects can makes the process more complicated

● There isn’t a “one fits all” Flow model

WHY ? - Cons



WHEN ?
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● Should you do it in any project?

● Never too late

● Every feature deserves a branch

WHEN ?



HOW ?
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HOW ? - Step 1

1. Open the branch selector



HOW ? - Step 2

2. Select the “New branch” option



HOW ? - Step 3

3. Give an appropriate name to the branch



HOW ? - Step 4

4. Switch the branch you want to work in



HOW ? - Step 5

5. Publish the new branch to the repository



HOW ? - Step 6

6. Create a Pull Request



HOW ? - Step 7

7. Open the Pull Request



HOW ? - Step 8

8. Merge the Pull Request to the Branch



MOST USED FLOW 
MODELS
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FLOW MODELS - Single Branch



● Simple

● Agile

● Teams need to trust each other

● All the commits are based on the use of Feature Flags

Single Branch - Features 

*Feature Flags that allow you to enable or disable a new feature, often used to avoid conflicts when merging.



FLOW MODELS - GitHub Flow



● Everything is done in the Feature branch

● Master is always deployable and acts like a safety measure

● Works very well with Continuous Deployment

● Clean Commit History

GitHub Flow - Features 

*Continuous Deployment is a software release process that uses automated testing.



FLOW MODELS - Git Flow



● Many branches (Master + Develop + Feature Branch + Release Branch + 
Hotfix Branch)

● Complex

● Great for release-based workflow

● The most famous model

● Not recommended for small projects

● Messy Commit History

Git Flow - Features 



FLOW MODELS - Release Flow



● System developed by Microsoft

● Topics are like mini features

● Releases every 3 weeks

● Model used to manage massive development teams

Release Flow - Features 



FLOW MODELS - GitLab Flow



● Similar to GitHub Flow but more complex

● Not as Agile as other methods

● When a feature arrives to production its more reliable

● Forbidden to commit in master directly

● Recommended for projects where you can't allow yourself to fail

GitLab Flow - Features 



FLOW MODELS - Trunk-Based Flow



● Similar to GitHub Flow

● Master branch can develop with the use of Feature Flags

● Can have Release branches

● Master is always deployable

Trunk-Based Flow - Features



CONCLUSION

6



● Large number of Pros VS the small amount of Cons

● Try to always use branching, but don’t feel forced to use it

● Create a branch in your repository and see what happens

●  Test the different models and find the  one suitable for your project

CONCLUSIONS 



● Single Branch: You probably already used, but try extracting its true potential. 
Focus on Feature Flags, so everyone can work at the same time.

● GitHub Flow: It’s easier to manage conflicts than a Single Branch flow. Good 
model to start branching. Not needing Feature Flags.

● Trunk-Based Development: Same advantages from GitHub Flow. 
It’s a matter of preference, in GitHub you deploy from the Feature branch, 
while in Trunk-Based you first commit to Master and then do the deployment. 
  

RECOMMENDATION



● Try creating a branch in your repository without looking the step by step 
guide

● Commit something to the branch and then merge it to main by using a 
pull request

● If you get lost visit https://osvak.github.io/Branching-Policies/  

Time to create your first branch

Recommendation: do it in a repository that you don’t use, or create a new one to avoid any problems

https://osvak.github.io/Branching-Policies/


● GitHub Repository

● Topic Web Page

RESOURCES

● Git Flow

● Main branch information

● Explanation of branching use

● Concept explanation

● Branch models (Spanish)

● Creative Branching Models for Multiple Release Streams

● Creately

LINKS
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https://creately.com/
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