
Branching
Policies

Òscar Canales · CITM Student · @Osvak

TABLE OF CONTENTS

INTRODUCTION
A brief explanation of the
research topic

1.

WHY ?
A look into the reasons to
use branching policies

2.

WHEN ?
Concise summary on when
you need branching

3.

HOW ?
A step by step guide to
creating a branch and
merging it

4.

MOST USED FLOW MODELS
A review of 6 branching
models commonly used

5.

CONCLUSION
A conclusion about the topic
and my recommendation

6.

INTRODUCTION

1

“Divide et Impera” - Julius Caesar

INTRODUCTION

Concept

● Deviating

● Continue

● Avoid conflicts

Git, is not just a name

● Efficiency

● Snapshot system

● “Killer feature”

Git’s logo

WHY ?

2

● “The Master branch is already
good”

● When you get in a bigger project
this won’t work

WHY ? - Do we need branches ?

● Powerful tool you need to learn

● The sooner the better

WHY ? - Personal Benefits

● Isolate the work from the main branch

● Limits who can contribute to each branch

● Simplifies the QA and bug fix process

● Ensures that a change to a branch must be reviewed

● Branches are cheap

● Agile Workflow

WHY ? - Pros

● For very small projects can makes the process more complicated

● There isn’t a “one fits all” Flow model

WHY ? - Cons

WHEN ?

3

● Should you do it in any project?

● Never too late

● Every feature deserves a branch

WHEN ?

HOW ?

4

HOW ? - Step 1

1. Open the branch selector

HOW ? - Step 2

2. Select the “New branch” option

HOW ? - Step 3

3. Give an appropriate name to the branch

HOW ? - Step 4

4. Switch the branch you want to work in

HOW ? - Step 5

5. Publish the new branch to the repository

HOW ? - Step 6

6. Create a Pull Request

HOW ? - Step 7

7. Open the Pull Request

HOW ? - Step 8

8. Merge the Pull Request to the Branch

MOST USED FLOW
MODELS

5

FLOW MODELS - Single Branch

● Simple

● Agile

● Teams need to trust each other

● All the commits are based on the use of Feature Flags

Single Branch - Features

*Feature Flags that allow you to enable or disable a new feature, often used to avoid conflicts when merging.

FLOW MODELS - GitHub Flow

● Everything is done in the Feature branch

● Master is always deployable and acts like a safety measure

● Works very well with Continuous Deployment

● Clean Commit History

GitHub Flow - Features

*Continuous Deployment is a software release process that uses automated testing.

FLOW MODELS - Git Flow

● Many branches (Master + Develop + Feature Branch + Release Branch +
Hotfix Branch)

● Complex

● Great for release-based workflow

● The most famous model

● Not recommended for small projects

● Messy Commit History

Git Flow - Features

FLOW MODELS - Release Flow

● System developed by Microsoft

● Topics are like mini features

● Releases every 3 weeks

● Model used to manage massive development teams

Release Flow - Features

FLOW MODELS - GitLab Flow

● Similar to GitHub Flow but more complex

● Not as Agile as other methods

● When a feature arrives to production its more reliable

● Forbidden to commit in master directly

● Recommended for projects where you can't allow yourself to fail

GitLab Flow - Features

FLOW MODELS - Trunk-Based Flow

● Similar to GitHub Flow

● Master branch can develop with the use of Feature Flags

● Can have Release branches

● Master is always deployable

Trunk-Based Flow - Features

CONCLUSION

6

● Large number of Pros VS the small amount of Cons

● Try to always use branching, but don’t feel forced to use it

● Create a branch in your repository and see what happens

● Test the different models and find the one suitable for your project

CONCLUSIONS

● Single Branch: You probably already used, but try extracting its true potential.
Focus on Feature Flags, so everyone can work at the same time.

● GitHub Flow: It’s easier to manage conflicts than a Single Branch flow. Good
model to start branching. Not needing Feature Flags.

● Trunk-Based Development: Same advantages from GitHub Flow.
It’s a matter of preference, in GitHub you deploy from the Feature branch,
while in Trunk-Based you first commit to Master and then do the deployment.

RECOMMENDATION

● Try creating a branch in your repository without looking the step by step
guide

● Commit something to the branch and then merge it to main by using a
pull request

● If you get lost visit https://osvak.github.io/Branching-Policies/

Time to create your first branch

Recommendation: do it in a repository that you don’t use, or create a new one to avoid any problems

https://osvak.github.io/Branching-Policies/

● GitHub Repository

● Topic Web Page

RESOURCES

● Git Flow

● Main branch information

● Explanation of branching use

● Concept explanation

● Branch models (Spanish)

● Creative Branching Models for Multiple Release Streams

● Creately

LINKS

REFERENCES

https://github.com/Osvak/Branching-Policies
https://osvak.github.io/Branching-Policies/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://docs.microsoft.com/en-us/azure/devops/repos/git/branch-policies-overview?view=azure-devops
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://www.atlassian.com/continuous-delivery/continuous-deployment#:~:text=Continuous%20Deployment%20(CD)%20is%20a,cycle%20has%20evolved%20over%20time.
https://www.youtube.com/playlist?list=PLZVwXPbHD1KM5oLAmhz-HHRIMhaOEXku5
https://www.youtube.com/watch?v=bCU_D7EHqLg&t=1563s
https://creately.com/

CREDITS: This presentation template was
created by Slidesgo, including icons by

Flaticon, infographics & images by Freepik.

DO YOU HAVE ANY QUESTION?
THANKS!

oscarcanales2001@gmail.com

http://bit.ly/2Tynxth
https://www.flaticon.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=s%20g_resources&utm_content=flaticon
https://www.freepik.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=s%20g_resources&utm_content=freepik
mailto:youremail@freepik.com

