I

Branching
Policies

\

O;
0
Q)
Q

TABLE OF CONTENTS

INTRODUCTION
= A brief explanation of the
research topic

WHY ?
=« Alook into the reasons to
use branching policies

WHEN ?
- Concise summary on when
you need branching

4.

HOW ?

A step by step guide to
creating a branch and
merging it

MOST USED FLOW MODELS

- Areview of 6 branching

models commonly used

CONCLUSION

- A conclusion about the topic

and my recommendation

1 &

INTRODUCTION

“Divide et Impera” - Julius Caesar

o

Concept

e Deviating

e Continue

e Avoid conflicts

[

)

/% Git, is not just a name

e Efficiency

e Shnapshot system

e “Killer feature”

WHY ? - Do we need branches ?

e “The Master branch is already
good”

e \When you get in a bigger project
this won't work

P4

WHY ? - Personal Benefits

Powerful tool you need to learn

The sooner the better

WHY ? - Pros

Isolate the work from the main branch

Limits who can contribute to each branch

Simplifies the QA and bug fix process

Ensures that a change to a branch must be reviewed
Branches are cheap

Agile Workflow

WHY ? - Cons

For very small projects can makes the process more complicated

There isn't a “one fits all” Flow model

WHEN ?

e Should you do it in any project?
e Never too late

e Every feature deserves a branch

HOW ? - Step 1

¢) File Edit View Repository Branch Help = O

Q Current repository P Current branch ~ Fetchon’gin
*° Branching-Policies main */ |ast fetched 2 minutes ago

No local changes

re no uncommitted changes in thi re are some friendly

t to do next.

View the files of your repository in Explorer
£ g y. 2 % E n Explorer

Shift F

Open the repository page on GitHub in your browser

Ctrl (Shift’ G View on GitHub

1. Open the branch selector

HOW ? - Step 2

() File Edit View Repository Branch Help = O X

a Current repository P Current branc ~ Fetch origin
** Branching-Policies main ™~ Last fetched 3 minutes ago

Changes 1
) 1 changed file

[J docs\gitl.png

Default branch
v

Other branches 395

ZJ = < ann (ISR S -

PRy ——
:

bt Iy beowaie

. Summary (required)

Description

Commit to main

2. Select the “New branch” option

HOW ? - Step 3

O File Edit View Repository Branch Help

m| Current repository . o :~':¢"~'3'5‘ -

Branching-Policies main

2 changed files

Create a branch <X Pehanaes

1 your reposstory m Exphoser

vy pange o0 GAMbl I yous beowses

. Create git2.png

Description

R+

3. Give an appropriate name to the branch

HOW ? - Step 4

O File Edit View Repository Branch Help

) 5 .

s = ~ Fetch origin
Branching-Policies =/ i

Last fetched 4 minute

Changes 3 docs\gitl.png
= 3 changed files
[J docs\gitl.png

docs\git2.png
) 5 Switch branch
04 docs\git3.png
langes

MANGes this rEPOSLDTy Mave are Jame trendy

e

Leave my changes on main
Your in-progress work will be stashed on this branch for you to retumn to pase Byt

| s ¥

e 0 GAMbl (1 yous beowses

. Summary (required)

Description

K+

4. Switch the branch you want to work in

HOW ? - Step 5

¢) File Edit View Repository Branch Help = O

Q Current repository P Current branch N Publish branch
" Branching-Policies feature_1 = Publish this branch to GitHub

0 changed files

No local changes

nmitted changes in t are some friendly

at to do next.

1) hasn't been published to the

Hub you can share it, open a pul

Show in Explorer

Open the repository page on GitHub in your browser

| Shift View on GitHub

5. Publish the new branch to the repository

HOW ? - Step 6

¢) File Edit View Repository Branch Help O
Q Current repository . X’, Current branch - ~~ Fetch origin
*" Branching-Policies feature_1 "~/ Last fetched just now

0 changed files
No local changes

There are no uncommitted chang i ere are some friendly
suggestions for what to do next.

Create a Pull Request from your current branch
current branch (feature_1) is already published to
eate a pull request to propose and collaborate on
your changes.

View the files of your repository in Explorer
R Ctrl ' Shift F

Show in Explorer

Open the repository page on GitHub in your browser
4 g iy Shift lf' S z View on GitHub
2Nt ©

6. Create a Pull Request

HOW ? - Step 7

Open a pull request

b

[N} base: main v L c e: feature_1 v v Able to merge. Th

‘ Feature 1

Write

ly and has been tested, so we proceed to merge it with the main

ing them.
Create pull request

v/ Create pull request
I |1

Create draft pull request

7. Open the Pull Request

Projects

No

Milestone

Linked issues

HOW ? - Step 8

Edit Openwith +

Osvak ¢ Owner | () =+

it with the main

Osvak/Branching-Policies.

0 This branch has no conflicts with the base branch

Merg; e per tomatically

A Unsubscribe

1 participant

B Lock conversation

8. Merge the Pull Request to the Branch

o e

MOST USED FLOW
MODELS

FLOW MODELS - Single Branch

Single Branch

= 0 @ 0 0 @0 @ -

Single Branch - Features

e Simple
e Agile
e Teams need to trust each other

e Allthe commits are based on the use of Feature Flags

\\

%e?ture Flags that allow you to enable or disable a new feature, often used to avoid conflicts when merging.

FLOW MODELS - GitHub Flow

GitHub Flow

GitHub Flow - Features

e FEverything is done in the Feature branch
e Master is always deployable and acts like a safety measure
e \Works very well with Continuous Deployment

e Clean Commit History

—

%{Vfinuous Deployment is a software release process that uses automated testing.

FLOW MODELS - Git Flow

Git Flow

o)

A

A4

T

Sl

O_OWQU

<7

R

Git Flow - Features

Many branches (Master + Develop + Feature Branch + Release Branch +
Hotfix Branch)

Complex

Great for release-based workflow
The most famous model

Not recommended for small projects

Messy Commit History

FLOW MODELS - Release Flow

Release Flow

J: A
O v v

Release Flow - Features

System developed by Microsoft
Topics are like mini features
Releases every 3 weeks

Model used to manage massive development teams

FLOW MODELS - GitLab Flow

GitLab Flow

(J

Feature / Hotfix

GitLab Flow - Features

Similar to GitHub Flow but more complex

Not as Agile as other methods

When a feature arrives to production its more reliable
Forbidden to commit in master directly

Recommended for projects where you can't allow yourself to fail

FLOW MODELS - Trunk-Based Flow

Trunk-Based Flow

=M P

Trunk-Based Flow - Features

Similar to GitHub Flow
Master branch can develop with the use of Feature Flags
Can have Release branches

Master is always deployable

0 &

CONCLUSIONS

Large number of Pros VS the small amount of Cons
Try to always use branching, but don't feel forced to use it
Create a branch in your repository and see what happens

Test the different models and find the one suitable for your project

RECOMMENDATION

e Single Branch: You probably already used, but try extracting its true potential.
Focus on Feature Flags, so everyone can work at the same time.

e GitHub Flow: It's easier to manage conflicts than a Single Branch flow. Good
model to start branching. Not needing Feature Flags.

e Trunk-Based Development: Same advantages from GitHub Flow.
It's @ matter of preference, in GitHub you deploy from the Feature branch,
while in Trunk-Based you first commit to Master and then do the deployment.

Time to create your first branch

e Trycreating a branch in your repository without looking the step by step
guide

e Commit something to the branch and then merge it to main by using a
pull request

e Ifyou get lost visit https://osvak.github.io/Branching-Policies/

Recommendation: do it in a repository that you don't use, or create a new one to avoid any problems

https://osvak.github.io/Branching-Policies/

RESOURCES

LINKS

° GitHub Repository

e Topic Web Page

REFERENCES

° Git Flow

° Main branch information

° Explanation of branching use

° Concept explanation

° Branch models (Spanish)

° Creative Branching Models for Multiple Release Streams

° Creately

https://github.com/Osvak/Branching-Policies
https://osvak.github.io/Branching-Policies/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://docs.microsoft.com/en-us/azure/devops/repos/git/branch-policies-overview?view=azure-devops
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://www.atlassian.com/continuous-delivery/continuous-deployment#:~:text=Continuous%20Deployment%20(CD)%20is%20a,cycle%20has%20evolved%20over%20time.
https://www.youtube.com/playlist?list=PLZVwXPbHD1KM5oLAmhz-HHRIMhaOEXku5
https://www.youtube.com/watch?v=bCU_D7EHqLg&t=1563s
https://creately.com/

THANKS!

DO YOU HAVE ANY QUESTION?

oscarcanales2001@gmail.com

N

http://bit.ly/2Tynxth
https://www.flaticon.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=s%20g_resources&utm_content=flaticon
https://www.freepik.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=s%20g_resources&utm_content=freepik
mailto:youremail@freepik.com

